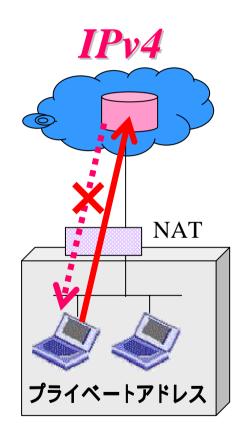


第1回 IPv6セミナー 「IPv6の技術解説 -基礎編-」

2002年9月26日

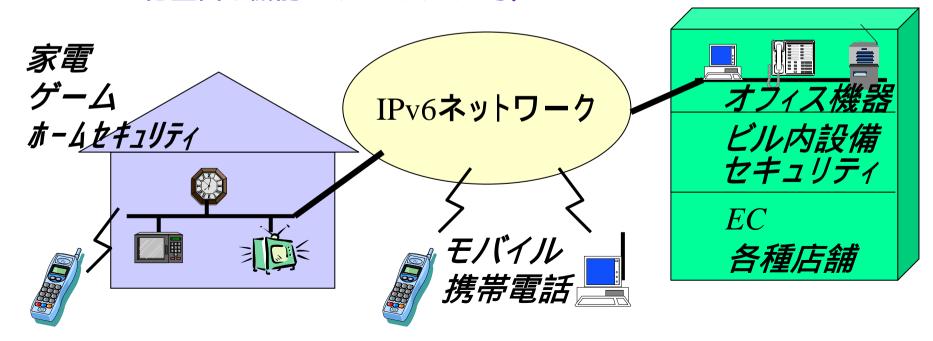
株式会社インターネット総合研究所 江面 祥行 / ezura@iri.co.jp

目次

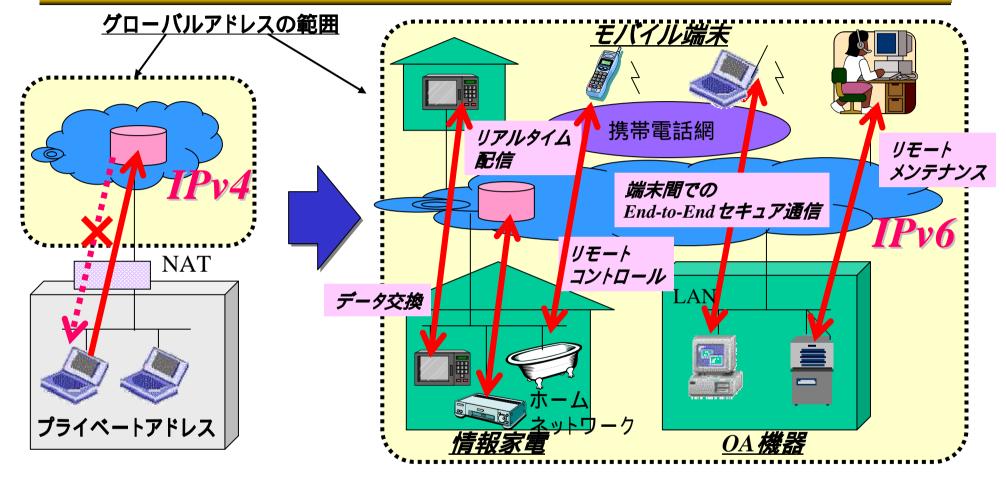

- IPv6の世界
- IPv6アドレスとは?
- 単純なヘッダ構成、細分化の防止
- セキュリティやリアルタイム性確保などの 機能の標準実装
- IPv6アドレス自動設定機能
- ユニキャストアドレス
- マルチキャストアドレス
- 参考資料

IPv6の世界

現在のインターネット(IPv4)


- 米国 国防総省関連(DARPA)がきっかけでルールが 作られ、米国はもとより世界に普及
- 人口60億人に対し、グローバルアドレス43億個 NAT(Network Address Translator の導入・普及)
- IPv4のインターネットが普及した一要因
 - コンセンサスのとれたモデル (社内のPCから、NATを介してインターネット上の サーバにアクセス)
 - このモデルに添った、装置開発、ビジネス開発 (統一化されたルータ機能、ホスティング事業の普及)
- IPv4における問題点
 - 情報家電、携帯電話等の非PCへの導入拡大に不向き
 - NATを介した柔軟なEnd-to-End通信の設定が困難

IPv6とは



- インターネットの爆発的な普及 アドレスが枯渇する
- 次世代インターネットとしてIPv6が開発された。
 - 無尽蔵に使えるグローバルアドレス(携帯、家電、ビル内設備)
 - 世界共通のセキュリティ仕様 & 品質管理仕様(EC、映像配信)
 - 家電でも簡単設定、プラグ&プレイ機能。
 - その他豊富な機能:マルチキャスト等。

IPv6が創造する新しいインターネットビジネス

IPv4:片方向の通信

Client & Server以外の モデルへの適用には いろいろと制限が発生する。

IPv6:双方向の通信

IPv4の制限がとれ、オープンな通信ができることにより

- ・新しい領域が開かれ、業態が一挙に変わる
- ・ネットビジネスとして認識されなかった人が参入する

IPv6とは何か

IPv6 = IP Version 6 次世代インターネットプロトコル

•目的

IPv4における様々な制約/限界の解消

◇アドレス長の限界ヘッダ処理の複雑さの解消

◇などなど...

•対象

現在IPv4を利用しているすべての人々 現在インターネットを利用していない全ての人々

IPv6の狙い

IPv6

- _基本設計思想
 - ・新時代のIPプロトコル
 - ・アドレス不足に対応を
 - ・セキュリティーへの考慮

IP技術のある意味で『仕切り直し』

『新しいプロトコルへの移行』という新しいチャレンジも

社会基盤形成のために不可欠なIPv6

21世紀情報社会にインターネットは不可欠

誰でも何でも何時でも何処でも使える 社会基盤とするためには、IPv4に限界

量の問題

安全の問題

魅力の問題

構成の問題

340澗(カンム)個の量は無限大に近く、ほぼ全てがインターネットを使える

当初からセキュリティ対応がなされ、安く簡単に実現できる

QoS等、動画配信のためのしくみが組み込まれている

大規模でグローバルなネットワークを想定している

技術開発と社会合意の両面で「民間の力を結集」して取り組むことが重要

IPv6技術·普及状況

·標準化作業

ok

·機器

ok

- 端末
- ルータ
- ゲートウェイ
- 相互接続性
- ·社会基盤
 - アドレス割り当て ok
 - DNS update 課題
 - IPv6 ネットワーク運用 課題

IPv6アドレスとは?

IP Next Generation

- 1991年7月
 - IPアドレスが足りなくなる、という研究を受けてIETFが 調査開始
- 1992年11月
 - RFC1380 アドレスの先行き調査結果
 - 次世代のインターネットプロトコル検討開始
- 1993年12月
 - RFC1550 IPngへの機能要求

IPv6への道

- 1995年1月
 - RFC1752 SIPPをベースにアドレスを128bit化
 - IPng(next generation)から IPv6 (IP version 6)へと正式 に改名
- 1995年12月
 - RFC1884 IPv6 Addressing Architecture
 - 1998年7月にRFC2373として改定
- 1998年末 IPv6関係RFC大改定
 - RFC2460 IPv6 Specification, etc...

IPv6 のアドレス空間

- アドレスの長さは128ビット
 - IPv4 **の**4倍の長さ
 - IPv4 **の**2⁹⁶倍のアドレス数
- 2¹²⁸個のアドレス数
 - だいたい 3.4×10³⁸ 個
 - ばら撒いても陸地 1cm²あたり 2.2 × 10²⁰個
- とにかく想像できないくらいたくさん!

経路情報の集約

- 経路情報を集約するためには...
 - クラスレスなアドレス構造
 - ネットワークの構造に応じた割り振り
 - 同じネットワークには連続したアドレスブロックを割り 振る
- IPv6 は IPv4 での経験を元に集約可能 (Aggregatable)なアドレス構造となっている。

IPv6のアドレス構造

- 「集約可能グローバルユニキャストアドレス」
- ネットワークトポロジに応じた階層構造を持つアドレス

3 13 8

24

16

64

FP TLA ID 予約

NLA ID SLA ID

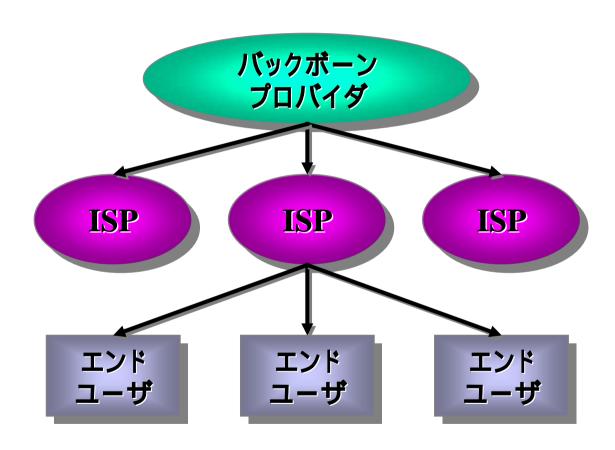
インタフェースID

パブリックトポロジ

サイト トポロジ

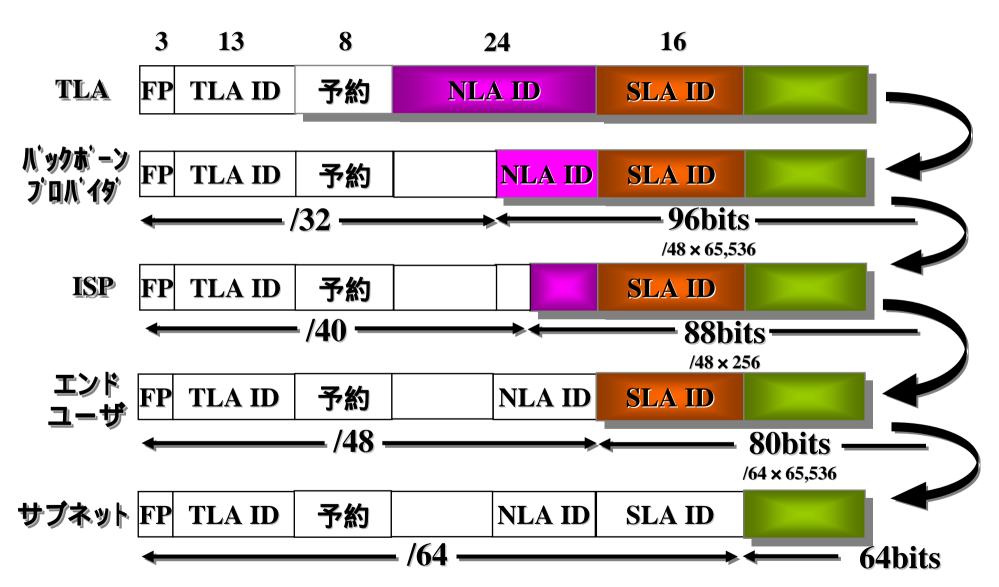
Format Prefix [001] FP

Top Level Aggregation ID TLA ID


Next Level Aggregation ID NLA ID

SLA ID Site Level Aggregation ID

インターフェースID Interface ID


階層的な割り振り

アドレス割り振りの例

IPv6 アドレスの種類

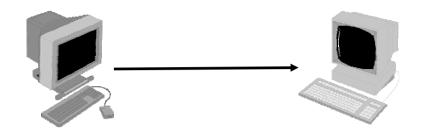
• アドレス形式プリフィクス

- IPv6 アドレスの種類を指定

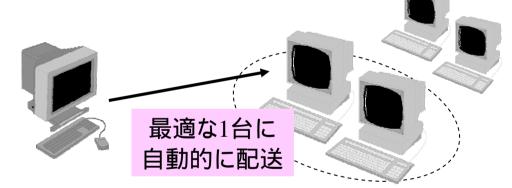
120 67			
プリフィクス	アドレス		
n ビット	128-n ビット		

001 1111 1110 10 1111 1110 11 1111 1111 プリフィクス以外がall 0 集約可能なグローバルユニキャストアドレス リンクローカルユニキャストアドレス サイトローカルユニキャストアドレス マルチキャストアドレス エニキャストアドレス

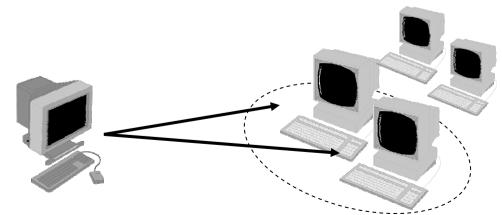
IPv6のアドレスタイプ


アドレスタイプ	アドレス設定対象	通信形態	通信対象	利用方法
ユニキャスト	ノード (インタフェース)	1対1	1	ホスト ルータ 間通信
マルチキャスト	グループ	1対多		ストリーミング
エニーキャスト	機能(サービス)	1対1	多(最適な 1つ選択)	DNS Discovery

アドレス構成


ユニキャスト

1個のインターフェイスを識別し、 1対1の通信を行う。


エニーキャスト

複数のインターフェイスに割り当てられ、そのうちのどれか1つに対して配送されることを目的。

マルチキャスト

複数のインターフェイスに対して割り当てられ、同一アドレスを持つ全てのインターフェイスに対して通信を行うためのもの

IPv6のアドレス表記

- 128bitはとっても長い!
- IPv4と同じように書くと...

32桁の16進数で表し、4桁ずつ「:」で区切って書く。
 例)21DA:90D3:0000:0000:0000:00FF:FE28:0C5A

IPv6 のアドレス省略表記

- 1)4桁(16ビット)ごとに区切った中での値のうち、先頭の0は省略可。
 - 21DA:90D3:0:0:0:FF:FE28:C5A
- 2)4桁(16ビット)ごとに区切ったなかの値が連続して、0である場合は、 1度だけそれを「::」で置き換え可能。
 - 21DA:90D3::FF:FE28:C5A
- 3)プレフィックス長によるアドレス範囲の指定
 - 21DA:90D3::FF:FE28:C5A /64

「IPv4互換アドレス」(上位96bitが0)ではIPv4の記法を使うことができる。

単純なヘッダ構成、細分化の防止

IPv4 フォーマット

Version (4bit)	IHL (4bit)	Type of Service(8bit)	Total Length (16bit)	
Identification(16bit)			Flags (3bit)	Fragment Offset(13bit)
Time To L	Time To Live (8bit) Protocol(8bit)		Header Checksum (16bit)	
Source Address (32bit)				
Destination Address (32bit)				
Ontions (可亦具)				
Options (可変長) Padding (可変				ding(可変長)

32ビット

IPv6 フォーマット

Version (4bit)	Traffic Class(8bit)	Flow Label(20bit)			
Payload Length (16bit)		Next Header (8bit)	Hop Limit (8bit)		
Source Address (128bit)					
Destination Address (128bit)					

32ビット

いろんな機能はオプションで

- IPv6 ヘッダは基本情報のみでサイズ固定
- 拡張機能は独立ヘッダとして連結する

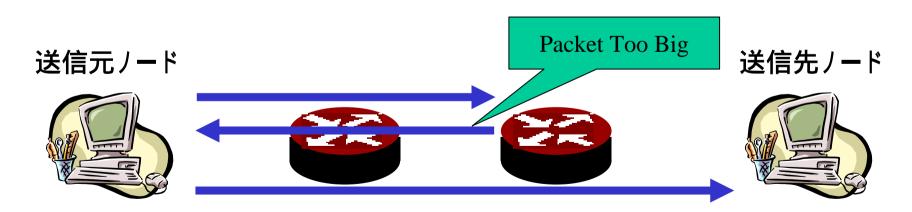
IPv6 拡張 拡張 TCP アプリケーション ヘッダ ベッダ データ

- •基本ヘッダは固定長なので処理が単純
- ・必要な機能情報だけを付加できる
- •将来的な拡張にも柔軟に対応可能

パスMTUディスカバリー(1)

- フォワーディングパケット細分化によるパケット数増加は、ルータ負荷の原因
 - ネットワークにはMTU (Maximum Transmission Unit)が存在する
 - 出力側I/FのMTUが入力側I/FのMTUより小さい時にフラグメント(パケット分割)が発生し、パケット数が増加する

パスMTUディスカバリー(2)



• IPv6 は経路上の最小MTUを探索する

送信元のノードはデフォルトのMTUでパケットを送信(Ethernet の場合、1500)

経路の途中でより小さなMTUが設定されていると、その直前の ルータが送信元ノードへ「Packet Too Big Message」を送信

「Packet Too Big Message」を受け取った送信元ノードは、そのMTU値に合わせてパケットをフラグメント化し、再度パケットを送信(フラグメントオプションヘッダを付加)

セキュリティやリアルタイム性確保などの 機能の標準実装

プロトコルレベルでの機能拡張

- セキュリティ機能
 - 通信するホスト間の認証と機密性を保持
 - IPsec を標準装備(IPv4ではオプション)
- 通信の優先度を指定可能
 - リアルタイム通信が必要なものには高い優先度を設定
 - 利用方法などはまだ研究段階

IPsec

- 通信を行う相手が正しい相手であるかどうかの 確認ができる。(認証)
- 通信内容を経路途中で覗き見されないようにすることができる。(暗号化)
- IPv6 の拡張ヘッダを用いて実装
 - ネットワーク間のIPsecから端末間でのIPsecへ

IPv6アドレス自動設定機能

ルータが教えてくれる

- IPv6なら、ネットワークに接続するとルータが設定に必要な情報をインタフェースに教えてくれる
- インタフェースはルータからのネットワーク情報と、 自分のインタフェースIDでアドレスを生成

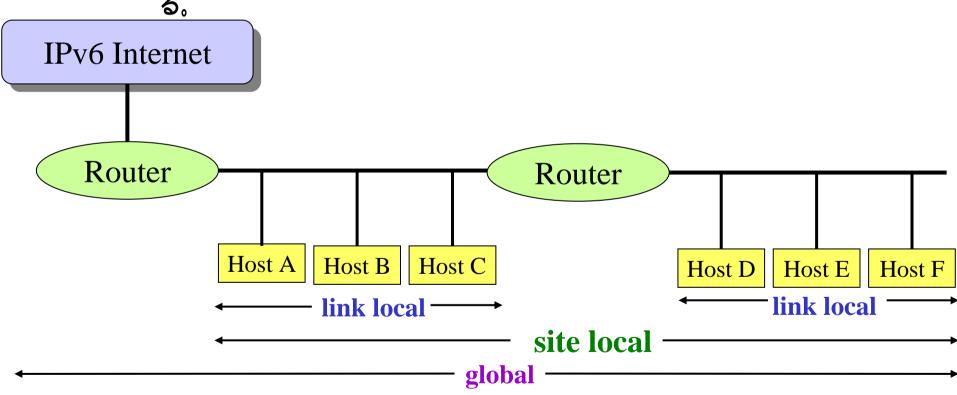
アドレスの自動設定

IPv6アドレス自動設定には、

- ステートレス・アドレス自動設定
 - ノードをネットワークにつなげるだけでアドレスの設定を行うことができる
- ステートフル・アドレス自動設定
 - DHCPなどによるアドレス自動設定

の2つの方法がある

プラグ&プレイとDHCP の違い


- DHCP (Dynamic Host Configuration Protocol) はあらかじめプールされたアドレスの割り当てを受けるもの
 - DHCP 用アドレスを予約しておく必要がある
 - 毎回違うアドレスが割り当てられる可能性もある
- IPv6 の自動設定はインタフェースが持つID にネット ワーク情報を付加してアドレスを生成するもの
 - アドレスは最初からインタフェースが持っている
 - _ 同じネットワークならアドレスは変わらない

ユニキャストアドレス

アドレススコープ

- ・「ノードに割り当てられているIPアドレスが、どの範囲で有効なのか」を意味する「スコープ」という概念が取り入れられた。
- IPv6アドレスは、その有効範囲をアドレス自身で決めることができる。

ユニキャストアドレスの種類(1)

- リンクローカルユニキャストアドレス
 - 同一セグメント(ルータを超えない範囲)の端末と通信 する場合に使用
- サイトローカルユニキャストアドレス
 - 異なるセグメント上にあるプライベートネットワーク端末 と通信する場合に使用
- グローバルユニキャストアドレス
 - インターネット上に存在する端末と通信する場合に使用

ユニキャストアドレスの種類(2) IRi

	インターネット	ルータ越え
リンクローカル・アドレス	×	×
サイトローカル・アドレス	×	
グローバル・ユニキャス ト・アドレス		

ローカルユニキャストアドレス

- ローカルなユニキャストアドレスは、NDP (Neighbor Discovery Protocol)やDHCPのようなリンク内でのノード管理のために使用。
 - ルータからグローバルアドレスの割り当てを受ける際に使用される
- インターネットに未接続のネットワークで、ローカルなユニキャストアドレスを割り当てておき、後でプリフィックスを置き換えるだけでインターネットに接続するという使い方もある。

ローカルユニキャストアドレスフォーマット

<u>リンクローカルアドレス(fe80::で始まる)</u>

64bit 10bit 54bit

1111111010

0000.....0000

Interface ID

サイトローカルアドレス(fec0::で始まる)

10bit 38bit 16bit 64bit

11111111011

0000..0000

Subnet ID

Interface ID

未指定アドレス 0:0:0:0:0:0:0

0:0:0:0:0:0:0:1 ループバックアドレス

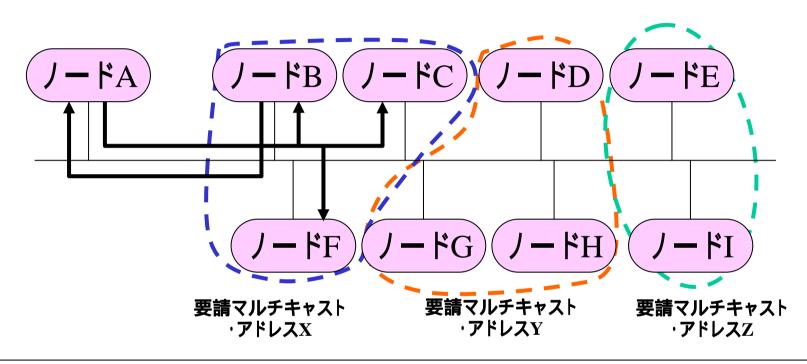
リンクローカルアドレスの生成

リンクローカルプレフィックス(fe80::)とインターフェイス 識別子の組み合わせで仮アドレス生成

重複アドレス検出(Duplicate Address Detection)

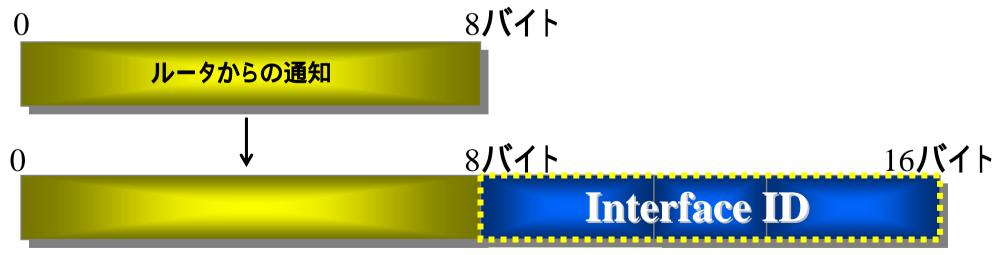
- 1)仮アドレスの個別性を検証(近隣要請メッセージ)
- 2)近隣通知応答が返されてこなければ、仮アドレスは個別。

EUI-64ベースのインタフェース識別子の生成



0xFF(16進数FF)と0xFE(16進数FE)の16進値 を持つ2オクテットを48ビットMACの中間に挿 入し、EUI-64アドレス生成

重複アドレス検出



- (1)ノードAは自分のリンクローカルアドレスを計算。
- (2) ノードAは近隣要請メッセージを送信。送信先は、自分の割り当てようとしているリンクローカルアドレスをもとに計算した要請マルチキャストアドレス。 始点アドレスは、未定義アドレス(::)。・・・
- (3)ノードBとアドレスが重複していたら、ノードBは近隣通知メッセージ送信。 IPv6の全ノード・マルチキャスト・アドレス利用。・・・

グローバルアドレスの生成とデフォルト経路の設定

- IPv6ルータは、定期的にアドレスの上位8バイトを通知している。 この8バイトは、「リンクの番号」と考えてよい。
- これは世界的に一意であり、経路制御の為に利用される。
- 上位8バイト(リンクの番号)とInterface ID(リンク内の番号)を連 結して、IPv6グローバルアドレスが生成される。
- デフォルト経路を上位8バイトを通知したルータへ向ける。

IPv4からの移行用アドレス

IPv4互換アドレス

2つのIPv6機器がIPv4で経路制御されたネットワークを通じて通信するため のアドレス

IPv4射影アドレス

IPv6をサポートしていないIPv4専用ノードで使用。IPv4しかサポートしていないホストとIPv6ホストが通信する場合、IPv6ホストはIPv4射影IPv6アドレスを使用する。

マルチキャストアドレス

マルチキャストアドレスフォーマット

8bit	4bit	4bit	80bit	32bit
11111111	flags	scope		Group ID
				<u> </u>

flags (マルチキャストの性質決定)0000 恒久的(定義済み)のアドレスしス0001 一般的なアドレス

scope (マルチキャストの通信決定)

- 0 予約
- 1 node-local scope
- 2 link-local scope
- 5 site-local scope
- 8 organization-local scope
- E global scope
- F 予約

定義済みのマルチキャストアドレス

アドレス	機能
FF00:0:0:0:0:0:0	予約
FF01:0:0:0:0:0:0:0 ~ FF0F:0:0:0:0:0:0:0	予約
FF01:0:0:0:0:0:0:1	ノード内の全てのIPv6ノード
FF02:0:0:0:0:0:1	リンク内の全てのIPv6ノード
FF01:0:0:0:0:0:0:2	ノード内の全てのIPルータ
FF02:0:0:0:0:0:2	リンク内の全てのIPルータ
FF02:0:0:0:0:0:C	DHCPサーバ/リレーエージェント
FF02:0:0:0:0:1:x:x	要請ノードアドレス

要請マルチキャスト・アドレスとは?

- IPv6の機能をもつノードは、各インタ フェイスのIPv6 アドレスをもとに、"要請マルチキャスト・アドレス"と呼 ばれるマルチキャスト・アドレスを生成。
- 各ノードは、自分のIPv6アドレスから要請マルチキャスト・アドレスを作成し、そのアドレス宛に送信されたパケットを受信しなければならない。
- 要請マルチキャスト・アドレスはIPv6アドレスを複数の グループにまとめる役割を果たす。

要請マルチキャストアドレスの生成

104bit(固定)

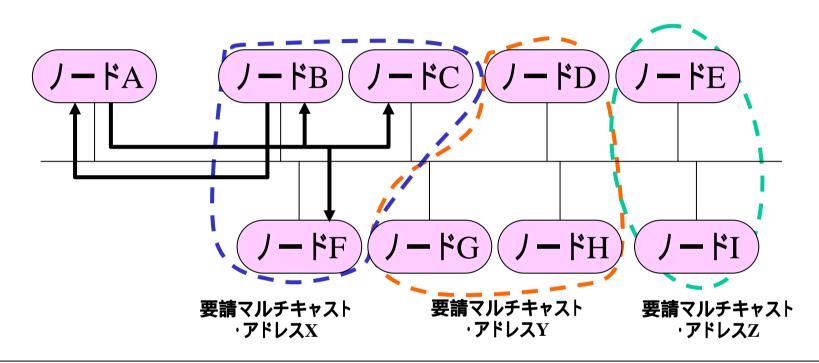
24bit

ff02 0000 0000 0000 0000 0001 ff

Interface IDの下位

- 要請マルチキャストアドレスは、IPv6アドレスを複数の グループにまとめる役割を果たす。
- scopeが2なので、同一リンク上でのみ有効

データリンク層アドレス解決



近隣探索プロトコル(Neighbor Discovery Protocol)が役割を担っている。

それ自体がIPv6の上位プロトコルとして設計されている。

- (1)要請マルチキャスト·アドレス計算(X)
- (2)Xに近隣要請をノードBのIPv6アドレスと共に送信
- (3) ノードBは、近隣通知パケットをノードAに返送

アドレス自動設定機能の比較

		IPv6	IPv4
利用するパケット		近隣探索プロトコル (NDP)	アドレス解決プロトコル (ARP)
LANプロトコル		ICMP	ARP
す通る信	発信元 アドレス	リンクローカル・ ユニキャストアドレス	MACアドレス
するアドレス 用	宛先 アドレス	リンクローカル・ マルチキャストアドレス	LANプロトコルの ブロードキャスト・アドレス

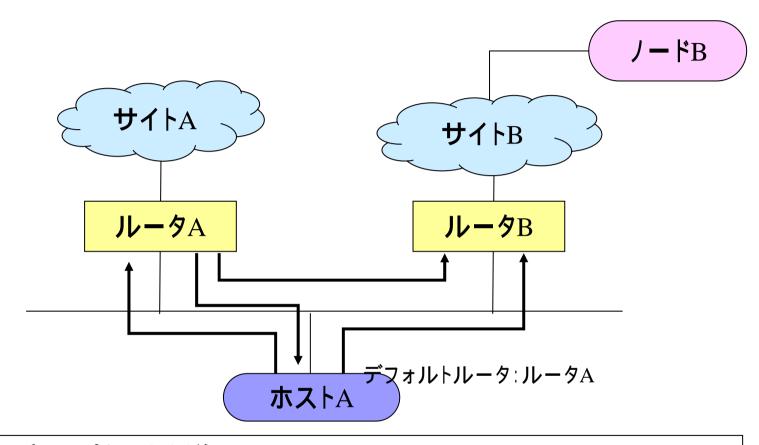
アドレス自動設定機能の比較

- ・ 耐障害性の向上
- アドレス不足の問題がない
- 弱点としては、DNSサーバのIPv6アドレスを入手 する方法が、まだ仕様策定中であること。

到達不能検知

リンク上のノードと通信不能になったことを検知 する機能

- 近隣探索プロトコルの一部として規定されている。
- IPv6では、データリンク層アドレスのキャッシュが 状態を持っている。
- 近隣探索プロトコルの近隣要請と近隣通知を利用。


向け直し

- ルータが、同一リンク上のホストから他のルータ へ送られるべきパケットを受信した場合に行われる。
- IPv4でも実現していたが、IPv6では近隣探索プロトコルの一部として実現されている。

向け直しの仕組み

ノードB宛のパケットを送る。

ノードB宛のパケット送る。

同時に向け直しパケットを送信。

以後、ホストAはノードB宛のパケットを正しくルータBに送ることができるようになる。

IPv4ネットワークとIPv6ネットワーク

参考資料

参考(関連 RFC)

- RFC2373: IPv6 Addressing Architecture
- RFC2374: An IPv6 Aggregatable Global Unicast Address Format
- RFC2401: Security Architecture for the Internet Protocol
- RFC2460: IPv6 Specification
- RFC2461: Neighbor Discovery for IPv6
- RFC2462: IPv6 Stateless Address Autoconfiguration
- RFC2463: ICMPv6 for IPv6

参考URL

IPv6普及·高度化推進協議会

http://www.v6pc.jp

WIDE project (IPv6)

http://www.wide.ad.jp/wg/ipv6/index.html

日本ネットワークインフォメーションセンター

http://www.nic.ad.jp

IETF (Internet Engineering Task Force)

http://www.ietf.org/

IETF IPng working group

http://playground.sun.com/pub/ipng/html/ipng-main.html

6bone

http://www.6bone.net/

6bone-jp

http://www.v6.sfc.wide.ad.jp/

IANA

http://www.iana.org/

ICANN

http://www.icann.org/

APNIC

http://www.apnic.net/

JPNIC

http://www.nic.ad.jp/